文章問題の考え方講座 ~part3 #2~

前回(part3 #1)の続き。

 

 

--------------------------------------------------

右の図のように、

 

直線①:y=x/2

双曲線②:xy=6 (x>0)

 

2点 A(-4,3) B(-1,-1) 

 

がある。

また、四角形ABCDが平行四辺形となるように、2点 C , D をそれぞれ①、②の上にとる。次の問いに答えなさい。

 

(1) 2点 C , D の座標をそれぞれ求めなさい。

 

(2) 点P (3,-1) を通る直線n で、平行四辺形ABCDの面積を2等分したい。

直線n の式を求めよ。

 

--------------------------------------------------

 

この問題の (1) ですね。

 

前回は、点C / 点D それぞれの x座標と y座標、それら4つの値を文字2つで表して連立方程式で解く、という考え方でした。

点C の座標を (X,Y) とし 点D の座標を X と Y を使って表わしましたね。

 

 

今回は、点C の座標を文字1つだけで表わす考え方です。

 

それほど難しいことではないです。点C は 直線① 上にあるのだから、例えば 点C の x座標が分かるのであれば 直線① の式に代入することで y の値を求めることが出来ますよね。

 

つまり、点C の x座標 = t とした場合、直線① の式 y=x/2 に代入して y=t/2、y座標 = t/2 と表わせます。

 

あとは前回同様、点C の座標 (t,t/2) から 点D の座標を書くと、

 

 

このように表わすことが出来るので、あとは 点D の座標を 双曲線② の式に代入し t の値を求めれば良いですね。

 

 

ちなみに前回と今回の解き方、何が違うかと言うと「代入のタイミング」だけなんですよね。

分かるでしょうか?

 

【前回】※扱う文字は X,Y から t,u に変更してます。

 C (t,u) とする。

 D (t-3,u+4) となる。

 C/D の値を式に代入。直線①:u=t/2、双曲線②:(t-3)(u+4)=6

 直線① と 双曲線② の式を連立方程式(代入法)で解く。(t-3)(t/2+4)=6

 

【今回】

 C の x座標 t とする。

 直線① に代入し y座標を作る。y=t/2

 D (t-3,t/2+4) となる。

 双曲線② に代入し方程式を解く。(t-3)(t/2+4)=6

 

という感じで、結局どちらも同じ式(二次方程式)を解くことになります。

 

 

 

さて、今回の解説もきちんと伝わったでしょうか?

 

次回は (2) の問題の解説を書いていきたいと思います(^^)

 

京橋、城東区蒲生の個別指導学習塾アチーブメント、無料体験24時間かんたんWEB予約

生徒ログイン

京橋、城東区蒲生の個別指導学習塾アチーブメント、インターネット学習『すらら』ログイン画面へ
がくげいスタディパーク生徒ログイン

カレンダー

京橋・城東区蒲生の個別指導学習塾アチーブメント - カレンダー

お問い合わせ

 

■TEL

06-6167-5572

受付時間:

月~土 10時~22時

 

Mail:

問い合わせフォームはコチラ

京橋・城東区蒲生の個別指導学習塾アチーブメント - Twitter
京橋・城東区蒲生の個別指導学習塾アチーブメント - Facebook
地頭を鍛える学習教室